the lines is also illustrated in Figure 2. The two components of v_{10} are separated by 10 ± 1 cm⁻¹, in agreement with the lowtemperature data.

An interpretation based on a core-size difference rather than a difference in planarity of the macrocycle is unlikely because the shifts in ν_3 , ν_2 , and ν_{10} (-5, -7, -11 cm⁻¹) of the ruffled form relative to the planar form in solution are proportional to the shifts of the tetragonal crystalline form relative to either the triclinic A form $(-7, -11, -18 \text{ cm}^{-1})$ or the B form $(-11, -13, -21 \text{ cm}^{-1})$. Also, the shift in ν_2 is larger than the shift in ν_3 . In contrast, the shifts predicted from an increase in core size are smaller for ν_2 than for ν_3 , 17 thus, the observed pattern of shifts in the core-size markers favors the ruffling interpretation. The differences in core-size marker line frequencies for the two solution forms comprise 50-70% of the differences observed for the two crystalline forms. The smaller frequency differences observed in solution suggest that the degree of ruffling is less in solution.

The enhanced contribution from the ruffled form at 406.7 nm indicates a red shift in the Soret absorption maximum for the ruffled form of NiOEP, relative to the absorption maximum of the planar solution form at 393 nm. Although we have not detected a shoulder in the absorption spectrum at 295 K or at 77 K, iterative extended Hückel calculations for the planar and the ruffled structures predict a red shift for the Soret and α bands of 410 and 360 cm⁻¹, respectively. IEH MO calculations were carried out with a program provided by M. Gouterman and E. R. Davidson. The molecular geometries used were those of the triclinic A and tetragonal crystal structures. The shift in the positions of the observed Q (α) and B (Soret) transitions was determined by using the predicted energies of the four frontier orbitals $(a_{1u}, a_{2u}, and e_g^*)$. The shifts were calculated by the method of Gouterman¹⁸ and Shelnutt.¹⁹ The primary effect of ruffling is destabilization of all of the frontier orbitals. In detail, both the a_{1u} and a_{2u} orbitals are destabilized more than the e_g^* , so that the separation between the HOMOs and LUMOs is smaller for the ruffled structure. This accounts for the red shift in the spectrum.

- (18) Gouterman, M. J. Chem. Phys. 1959, 30, 1139.
- (19) Shelnutt, J. A.; Ortiz, V. J. Phys. Chem. 1985, 89, 4733.
- (20) Deleted in proof.
- (21) Deleted in proof.

The full implication of ruffled conformations on nickel-tetrapyrrole chemistry is unclear at present. Multiple forms have recently been detected in nickel tetrapyrroles related to cofactor F_{430} . Native F_{430} is expected to be more planar than its heat-extracted form, the 12,13-diepimer. 11,24 It is thought that the degree of planarity in these two F₄₃₀ forms determines their relative axial ligand affinities¹¹ and may affect other properties including catalytic activity. An increased degree of ruffling can also explain the observed differences in the dynamics of axial ligand photodissociation for the reduced nickel tetrapyrroles (such as the F_{430} model compound)^{23,25} compared with the more planar nickel porphyrins.26

In particular, for NiOEP the presence of multiple forms at room temperature strongly suggests that a reinterpretation of previous work on the vibrational analysis of porphyrins may be necessary, especially since NiOEP has been used as a reference structure. Because of the existence of multiple forms in solution and because of the large differences between the low-frequency vibrations of the tetragonal and triclinic forms, 7 some vibrations may have been identified incorrectly in the past. Also, the existence of a ruffled equilibrium conformation suggests that a normal coordinate analysis based on the nonplanar structure might aid in assignment of the out-of-plane vibrational modes.³ The existence of both planar and ruffled species in solution also explains some of the anomalous spectroscopic behavior of nickel porphyrins that occurs upon aggregation²⁷ and upon π - π complex formation.²⁸

Acknowledgment. This work was performed at Sandia National Laboratories and supported by U.S. Department of Energy Contract DE-AC04-76DP00789, Gas Research Institute Contract 5082-260-0767 (to J.A.S.), the Associated Western Universities (to B.A.C.), and National Institutes of Health Grant 33330 and the donors of the Petroleum Research Fund, administered by the American Chemical Society (to M.R.O).

New Molecular Hydrogen Iron(II) Complexes: Synthesis, Characterization, and Reactivity with Aryldiazonium Cations

Gabriele Albertin,* Stefano Antoniutti, and Emilio Bordignon*

Contribution from the Dipartimento di Chimica dell'Università di Venezia, Dorsoduro 2137, 30123 Venice, Italy. Received April 29, 1988

Abstract: Dihydrogen complexes of the type $[FeH(\eta^2-H_2)P_4]BPh_4$ $[P = PhP(OEt)_2$ and $P(OEt)_3]$ were prepared by allowing the dihydride FeH_2P_4 to react at -80 °C with HBF_4 ·Et₂O in ethanol. Variable-temperature ¹H and ³¹P[¹H] NMR spectra and T₁ measurements of the complexes are reported. Ligand-substitution reactions with CO, isocyanide, nitrile, and phosphite afforded the new monohydrides [FeHLP₄]BPh₄ [L = CO, 4-CH₃C₆H₄NC, 4-CH₃OC₆H₄NC, 4-ClC₆H₄NC, 2,6-(CH₃)₂C₆H₃NC, 4-CH₃C₆H₄CN, CH₃(CH₂)₂CN, P(OEt)₃, and PhP(OEt)₂]. Furthermore, the reactivity with aryldiazonium cations of both molecular hydrogen [FeH(η^2 -H₂)P₄]⁺ and hydride [FeHLP₄]⁺ derivatives was examined and led to the synthesis of bis-(aryldiazenido) [Fe(ArN₂)₂P₃]²⁺ (Ar = 4-CH₃C₆H₄ and 4-CH₃OC₆H₄) and monodiazene [Fe(ArN=NH)LP₄]²⁺ (L = nitrile) complexes, respectively. Their characterization by infrared, 1H, and 31P(1H) NMR data is also reported.

There has recently been considerable interest in the chemistry of dihydrogen complexes of the transition metals, not only because they may serve as models for the important process of oxidative addition of the dihydrogen, but also because of their relevance

⁽¹⁷⁾ Parthasarathi, N.; Hansen, C.; Yamaguchi, S.; Spiro, T. G. J. Am. Chem. Soc. 1987, 109, 3865.

⁽²²⁾ Shelnutt, J. A., submitted for publication in J. Phys. Chem.

⁽²³⁾ Shelnutt, J. A. J. Am. Chem. Soc. 1987, 109, 4169.
(24) Shiemke, A. K.; Scott, R. A.; Shelnutt, J. A. J. Am. Chem. Soc. 1988, 110, 1645.

⁽²⁵⁾ Crawford, B. A.; Findsen, E. W.; Ondrias, M. R.; Shelnutt, J. A.

Inorg. Chem. 1988, 27, 1846.(26) Findsen, E. W.; Shelnutt, J. A.; Ondrias, M. R. J. Phys. Chem. 1988,

⁽²⁷⁾ Shelnutt, J. A.; Dobry, M. M.; Satterlee, J. D. J. Phys. Chem. 1984,

⁽²⁸⁾ Shelnutt, J. A. J. Phys. Chem. 1984, 88, 6121.

to homogeneous catalysis. 1-10 In this context, a number of molecular hydrogen complexes of several metals have been reported, mainly with tertiary phosphine ligands. 1-5 However, no example of such a complex containing phosphite P(OR), ligands is known, although their different electronic and steric properties may give further information on the properties of this new class of compounds, as well as on the factors governing the dihydrogen vs dihydride equilibrium. In this paper we report the synthesis and characterization of new iron(II) molecular hydrogen complexes with phosphite ligands. We are also interested in the chemistry of aryldiazo and aryldiazene complexes and have previously reported11 the reactivity of mono- and dihydride iron(II) complexes with aryldiazonium cations, which allowed the synthesis of the first bis(diazene) complexes. However, no data are available on the reaction of dihydrogen derivatives toward ArN2+, and an investigation on the reactivity of our hydride-dihydrogen iron(II) complexes with aryldiazonium cations was therefore undertaken, with the aim of comparing the results with those obtained with "classical" dihydride FeH₂P₄ derivatives. Furthermore, the presence of both H₂ and H⁻ bonded to an iron atom may give information on the possibilities of the reduction, in this system, of an ArN=N group to an arythydrazine molecule. The results of these studies are also presented here.

Experimental Section

General Comments. Unless otherwise noted, all manipulations were carried out in air-free atmosphere (e.g. H₂ and/or argon) by using standard Schlenk and syringe techniques or in a Vacuum Atmosphere drybox. All solvents used were dried over appropriate drying agents, degassed on a vacuum line, and distilled into vacuum-tight storage flasks. Diethoxyphenylphosphine was prepared by the method of Rabinowitz and Pellon; 12 triethyl phosphite was an Ega Chemie product and purified by distillation under nitrogen. Deuterium was obtained13 from D2O and Na; high-purity HD was prepared from LiAlH₄ and D₂O (99.8%) following the reported method. ¹⁴ Diazonium salts were obtained in the usual way described in the literature.15 The labeled diazonium salt [4-CH3C6-H₄N=15N]BF₄ was prepared from Na¹⁵NO₂ (99% enriched, Stohler Isotope Chemicals) and the arylamine. Substituted phenyl isocyanides were obtained by the phosgene method of Ugi et al. 16 Other reagents

(1) (a) Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J. J. Am. Chem. Soc. 1984, 106, 451. (b) Kubas, G. J.; Ryan, R. R.; Wrobleski, D. A. J. Am. Chem. Soc. 1986, 108, 1339. (c) Wasserman, H. J.; Kubas, G. J.; Ryan, R. R. J. Am. Chem. Soc. 1986, 108, 2294. (d) Kubas, G. J.; Unkefer, C. J.; Swanson, B. I.; Fukushima, E. J. Am. Chem. Soc. 1986, 108, 7000. (e) Kubas, G. J.; Ryan, R. R.; Unkefer, C. J. J. Am. Chem. Soc. 1987, 109, 8113.

(2) (a) Crabtree, R. H.; Lavin, M. J. Chem. Soc., Chem. Commun. 1985, 794. (b) Crabtree, R. H.; Hamilton, D. G. J. Am. Chem. Soc. 1986, 108, 3124. (c) Crabtree, R. H.; Lavin, M.; Bonneviot, L. J. Am. Chem. Soc. 1986, 108, 4032.

- (3) (a) Morris, R. H.; Sawyer, J. F.; Shiralian, M.; Zubkowski, J. D. J. (3) (a) Morris, R. H.; Sawyer, J. F.; Shiralian, M.; Zubkowski, J. D. J. Am. Chem. Soc. 1985, 107, 5581. (b) Bautista, M.; Earl, K. A.; Morris, R. H.; Sella, A. J. Am. Chem. Soc. 1987, 109, 3780. (c) Morris, R. H.; Earl, K. A.; Luck, R. L.; Lazarowych, N. J.; Sella, A. Inorg. Chem. 1987, 26, 2674. (4) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109, 5865. (5) (a) Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1986, 506. (b) Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1987, 1675.
- Chem. Commun. 1987, 1675
- (6) Bianchini, C.; Mealli, C.; Peruzzini, M.; Zanobini, F. J. Am. Chem. Soc. 1987, 109, 5548.
- (7) Ozin, G. A.; Garcia-Prieto, J. J. Am. Chem. Soc. 1986, 108, 3099.
 (8) (a) Gadd, G. E.; Upmacis, R. K.; Poliakoff, M.; Turner, J. J. J. Am. Chem. Soc. 1986, 108, 2547.
 (b) Upmacis, R. K.; Poliakoff, M.; Turner, J. . J. Am. Chem. Soc. 1986, 108, 3645. (c) Church, S. P.; Grevels, F. W.; Hermann, H.; Schaffner, K. J. Chem. Soc., Chem. Commun. 1985, 30.

 (9) Sweany, R. L. J. Am. Chem. Soc. 1985, 107, 2374.
 (10) (a) Jean, Y.; Eisenstein, O.; Volatron, F.; Maouche, B.; Sefta, F. J. Am. Chem. Soc. 1986, 108, 6587. (b) Hay, P. J. J. Am. Chem. Soc. 1987, 109, 705.

- (11) (a) Albertin, G.; Antoniutti, S.; Pelizzi, G.; Vitali, F.; Bordignon, E. J. Am. Chem. Soc. 1986, 108, 6627. (b) Albertin, G.; Antoniutti, S.; Bordignon, E. Inorg. Chem. 1987, 26, 3416. (c) Albertin, G.; Antoniutti, S.; Lanfranchi, M.; Pelizzi, G.; Bordignon, E. Inorg. Chem. 1986, 25, 950 and references therein.
 - (12) Rabinowitz, R.; Pellon, J. J. Org. Chem. 1961, 26, 4623.
- (13) Brauer, G. Handbook of Preparative Inorganic Chemistry, 2nd ed.; Academic Press: New York, 1963; Vol. 1.
- (14) Wender, I.; Friedel, R. A.; Orchin, M. J. Am. Chem. Soc. 1949, 71,
- (15) Vogel, A. I. Practical Organic Chemistry, 3rd ed.; Longmans, Green and Co.: New York, 1956; p 609.

were purchased from commercial sources in the highest available purity and used as received.

Infrared spectra were recorded on a Perkin-Elmer Model 683. Solution ¹H NMR spectra were obtained with Varian EM-390 and Varian FT-80A spectrometers. Spectra were recorded at temperature varying between -85 and +34 °C unless otherwise noted, and are referred to internal tetramethylsilane. Fourier-mode, proton-noise-decoupled ³¹P NMR spectra were collected on a Varian FT-80A spectrometer operating at 32.203 MHz. All chemical shifts are reported with respect to 85% H₃PO₄, with downfield shifts considered positive. Conductivities of 10⁻³ M solutions of the complexes in acetone at 25 °C were measured with a Radiometer CDM 83 instrument. Solution susceptibilities were determined by the Evans method.17

Synthesis of the Complexes. Dihydride species FeH₂P₄ [P = PhP-(OEt), and P(OEt), were prepared according to the procedure previously reported.¹⁸ Deuterides FeD₂P₄ were obtained in the same way by

using NaBD4 as reagent.

 $[FeH(\eta^2-H_2)P_4]BPh_4[P = PhP(OEt)_2(1), P(OEt)_3(1^*)].$ A slight excess of HBF₄·Et₂O (54% solution) (ca. 1.2 mmol, 0.17 mL) was slowly added to a suspension of FeH₂P₄ (1 mmol) in 20 mL of ethanol cooled to -80 °C. The reaction mixture was brought to 0 °C in 10-15 min and stirred until a pale-yellow solution was obtained (5-10 min). The addition of NaBPh4 (1.2 mmol, 0.41 g) afforded a pale-yellow precipitate, which was filtered and crystallized by dissolving in CH₂Cl₂ (4-5 mL) and, after filtration, adding ethanol in excess (20-40 mL); yield ≥75%.

Anal. Calcd for 1: C, 65.65; H, 7.15. Found: C, 65.41; H, 7.06. A_M = 93.5 Ω^{-1} M⁻¹ cm². ¹H NMR (CD₂Cl₂) δ 7.41, 6.95 (m, 40 H, Ph), 3.36 (m, 16 H, CH₂), 1.00 (t, 24 H, CH₃)

Calcd for 1*: C, 55.29; H, 8.02. Found: C, 55.10; H, 7.90. $\Lambda_{\rm M} = 95.3~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. ¹H NMR (CD₂Cl₂) δ 7.29, 6.95 (m, 20 H, Ph), 3.95 (m, 24 H, CH₂), 1.24 (t, 36 H, CH₃).

 $[FeH(\eta^2-H_2)\{PhP(OEt)_2\}_4]BF_4$ (1a). To a solution of FeH2{PhP-(OEt)2/4 (1 mmol, 0.85 g) in 20 mL of diethyl ether a slight excess of HBF₄·Et₂O (ca. 1.2 mmol, 0.17 mL) was added at -80 °C and the reaction mixture was brought to 0 °C. After about 10 min of stirring a white solid separated out, which was filtered and crystallized from CH_2Cl_2 (5 mL) and diethyl ether (30-40 mL); yield \geq 60%.

Anal. Calcd: C, 51.19; H, 6.77. Found: C, 51.08; H, 6.83. $\Lambda_{\rm M}=$ 141 Ω^{-1} M⁻¹ cm². ¹H NMR (CD₂Cl₂) δ 7.39 (m, 20 H, Ph), 3.34 (m, 16 H, CH₂), 0.99 (t, 24 H, CH₃), -8.02 (qi, $J_{PH}(app) = 22$ Hz, H

 $[FeH(RNC){PhP(OEt)_2}_4]BPh_4$ (2: $R = 4-CH_3C_6H_4$ (a), $4-CH_3OC_6H_4$ (b), $2.6-(CH_3)_2C_6H_3$ (c), $4-ClC_6H_4$ (d), $4-NO_2C_6H_4$ (e)). The appropriate isocyanide (0.5 mmol) was added to a solution of [FeH(η^2 -H₂)-{PhP(OEt)₂|₄]BPh₄ (0.43 mmol, 0.5 g) in 10 mL of dichloromethane and the reaction mixture was stirred for 1 h. The solvent was removed under reduced pressure and the resulting oil was triturated with ethanol (5 mL) to give a white solid that was crystallized from CH2Cl2 (5 mL) and ethanol (20 mL); yield ≥90%. The physical constants and elemental analyses follow.

Anal. Calcd for 2a: C, 67.24; H, 6.90; N, 1.09. Found: C, 66.92; H, 6.92; N, 1.02. mp 175 °C. $\Lambda_{\rm M} = 83.2~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. ¹H NMR (CD₂Cl₂) δ 7.24, 7.00 (m, 44 H, Ph), 3.64 (m, 16 H, CH₂), 2.41 (s, 3 H, CH₃), 1.11 (t, 24 H, CH₃ phos).

Calcd for 2b: C, 66.42; H, 6.81; N, 1.08. Found: C, 66.34; H, 6.85; N, 1.01. mp 78 °C. $\Lambda_{\rm M} = 90.2 \,\Omega^{-1} \,\mathrm{M}^{-1} \,\mathrm{cm}^2$. ¹H NMR [(CD₃)₂CO] δ 7.56, 7.33, 6.88 (m, 44 H, Ph), 3.75 (m, 16 H, CH₂), 3.89 (s, 3 H, CH₃), 1.16 (t, 24 H, CH₃ phos).

Calcd for 2c: C, 67.44; H, 6.98; N, 1.08. Found: C, 67.50; H, 6.84; N, 0.95. mp 152 °C. $\Lambda_{\rm M} = 84.3~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. ¹H NMR (CD₂Cl₂) δ 7.17, 6.87 (m, 43 H, Ph), 3.51 (m, 16 H, CH₂), 2.34 (s, 6 H, CH₃), 0.99 (t, 24 H, CH₃ phos).

Calcd for **2d**: C, 65.27; H, 6.56; N, 1.07. Found: C, 65.13; H, 6.48; N, 0.95. mp 174 °C. $\Lambda_M = 83.3~\Omega^{-1}~M^{-1}~cm^2$. ¹H NMR (CD₂Cl₂) δ 7.33, 7.16, 6.87 (m, 44 H, Ph), 3.56 (m, 16 H, CH₂), 1.03 (t, 24 H, CH₃).

Calcd for 2e: C, 64.75; H, 6.51; N, 2.13. Found: C, 64.49; H, 6.50; N, 2.04. mp 175 °C. $\Lambda_{\rm M} = 86.3~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. ¹H NMR (CD₂Cl₂) δ 8.26, 7.18, 6.87 (m, 44 H, Ph), 3.59 (m, 16 H, CH₂), 1.05 (t, 24 H, CH₃).

 $[FeH(4-CH_3C_6H_4NC)]P(OEt)_3]_4]BPh_4$ (2a*). This compound was

⁽¹⁶⁾ Ugi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offermann, K. Angew.

Chem., Int. Ed. Engl. 1965, 4, 472. (17) Evans, D. F. J. Chem. Soc. 1959, 2003. Bailey, R. A. J. Chem. Educ. 1972, 49, 297.

^{(18) (}a) Tebbe, F. N.; Meakin, P.; Jesson, J. P.; Muetterties, E. L. J. Am. Chem. Soc. 1970, 92, 1068. (b) Titus, D.; Orio, A. A.; Gray, H. B. Inorg. Synth. 1972, 13, 117. (c) Gerlach, D. H.; Peet, W. G.; Muetterties, E. L. J. Am. Chem. Soc. 1972, 94, 4545.

prepared following the method reported above, starting from [FeH(η^2 -H₂){P(OEt)₃}₄]BPh₄; yield \geq 85%.

Anal. Calcd: C, 58.09; H, 7.66; N, 1.21. Found: C, 58.12; H, 7.60; N, 1.28. mp 126 °C dec. $\Lambda_{M} = 92.0 \ \Omega^{-1} \ M^{-1} \ cm^{2}$. ¹H NMR [(C-D₃)₂CO] δ 7.26, 6.87 (m, 24 H, Ph), 4.13 (m, 24 H, CH₂), 2.32 (s, 3H, CH₁), 1.28 (t, 36 H, CH₃ phos).

[FeH(RCN)[PhP(OEt)₂]₄]BPh₄ (3: R = 4-CH₃C₆H₄ (a), CH₃CH₂CH₂ (b)). To a solution of [FeH(η^2 -H₂)[PhP(OEt)₂]₄]BPh₄ (0.43 mmol, 0.5 g) in dichloromethane (15 mL) a slight excess of the appropriate nitrile (0.6 mmol) was added and the solution stirred for 2 h. Removal of the solvent under reduced pressure gave an oily product that was treated with ethanol (8 mL). The pale-yellow solid obtained was filtered and crystallized from CH₂Cl₂ (5 mL)/ethanol (20 mL); yield \geq 80%.

Anal. Calcd for 3a: C, 67.24; H, 6.90; N, 1.09. Found: C, 67.09; H, 6.92; N, 1.02. mp 141 °C. $\Lambda_{\rm M} = 84.4~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. ¹H NMR [(CD₃)₂CO] δ 7.47, 7.31, 6.87 (m, 44 H, Ph), 3.74 (m, 16 H, CH₂), 2.46 (s, 3 H, CH₃), 1.16 (t, 24 H, CH₃ phos).

Calcd for **3b**: C, 66.02; H, 7.09; N, 1.13. Found: C, 65.81; H, 7.21; N, 1.08. mp 126 °C. $\Lambda_{M} = 83.6 \ \Omega^{-1} \ M^{-1} \ cm^{2}$. ¹H NMR [(CD₃)₂CO] δ 7.34, 6.87 (m, 40 H, Ph), 3.69 (m, 16 H, CH₂ phos), 3.33 m, 2.81 t (4 H, CH₂ nitrile), 1.75 (q, 3 H, CH₃ nitrile), 1.14 (t, 24 H, CH₃ phos). [FeH(4-CH₃C₆H₄CN)[P(OEt)₃]₄]BPh₄ (3a*). This compound was

[FeH(4-CH₃C₆H₄CN)|P(OEt)₃|₄]BPh₄ (3a*). This compound was prepared exactly as for 3 starting from [FeH(η^2 -H₂)|P(OEt)₃|₄]BPh₄; yield \geq 75%.

Anal. Calcd: C, 58.09; H, 7.66; N, 1.21. Found: C, 58.07; H, 7.81; N, 1.09. mp 85 °C dec. $\Lambda_{\rm M}$ = 98.1 Ω^{-1} M⁻¹ cm². ¹H NMR [(CD₃)₂CO] δ 7.31, 6.88 (m, 24 H, Ph), 4.17 (m, 24 H, CH₂), 2.38 (s, 3 H, CH₃), 1.28, 1.24 (t, 36 H, CH₃ phos).

[FeHP₅]BPh₄ (4: $P = PhP(OEt)_2$ (a), $P(OEt)_3$ (a*)). The appropriate phosphite (0.5 mmol) was added to a solution of [FeH(η^2 -H₂)P₄]BPh₄ (0.43 mmol) in dichloromethane (20 mL) and the mixture was stirred for 1 h. The solvent was removed and the resulting oil was triturated with ethanol (8 mL) to give a white solid that was crystallized from ethanol; yield $\geq 80\%$.

Anal. Calcd for **4a**: C, 65.01; H, 7.08. Found: C, 64.89; H, 7.01. mp 91 °C dec. Λ_M = 83.2 Ω^{-1} M⁻¹ cm². ¹H NMR [(CD₃)₂CO] δ 7.35, 6.86 (m, 45 H, Ph), 3.53 (m, 20 H, CH₂), 1.16 (t, 30 H, CH₃).

Calcd for 4a*: C, 53.74; H, 8.02. Found: C, 53.74; H, 8.02. mp 125 °C. $\Lambda_{\rm M} = 92.1~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. ¹H NMR [(CD₃)₂CO] δ 7.33, 6.88 (m, 20 H, Ph), 4.10 (m, 30 H, CH₂), 1.29 (t, 45 H, CH₃).

[FeH{P(OEt)₃]{PhP(OEt)₂]₄]BPh₄ (4b) and [FeH{PhP(OEt)₂]{P-(OEt)₃]₄]BPh₄ (4b*). These compounds were prepared following the method reported above for 4a.

Anal. Calcd for **4b**: C, 62.97; H, 7.25. Found: C, 63.09; H, 7.14. mp 110 °C dec. $\Lambda_{\rm M}$ = 84.0 Ω^{-1} M⁻¹ cm². ¹H NMR [(CD₃)₂CO] δ 7.77, 7.37, 6.88 (m, 40 H, Ph), 3.75 (m, 22 H, CH₂), 1.22, 1.18, 1.16, 1.09 (t, 33 H, CH₃).

Calcd for **4b***: C, 56.23; H, 7.81. Found: C, 55.97; H, 7.75. mp 105 °C. $\Lambda_{M} = 89.0 \,\Omega^{-1} \,M^{-1} \,cm^{2}$. ¹H NMR [(CD₃)₂CO], δ : 8.04, 7.38, 6.88 (m, 25 H, Ph), 4.08 (m, 28 H, CH₂), 1.33, 1.25, 1.19 (t, 42 H, CH₃).

[Fe(ArN₂)₂]P(OEt)₃|₃](BPh₄)₂ (5*: Ar = 4-CH₃C₆H₄ (a), 4-CH₃OC₆H₄ (b)). A solution of [FeH(η^2 -H₂)|P(OEt)₃|₄]BPh₄ (0.7 mmol, 0.73 g) in dichloromethane (20 mL) was cooled to -80 °C and quickly transferred into a reaction flask containing an excess of the appropriate diazonium salt (2.2 mmol). The reaction mixture was brought to room temperature in 10-15 min and stirred for 1 h. The unreacted diazonium salt was removed by filtration and the resulting solution evaporated to dryness. The brown oil obtained was treated with ethanol (10 mL) containing NaBPh₄ (1 mmol, 0.34 g) to give a red solid that was filtered and crystallized by dissolving the product in CH₂Cl₂ (5 mL) and, after filtration, adding ethanol drop by drop until a solid separated out; yield \geq 65%

Anal. Calcd for **5a***: C, 67.14; H, 6.97; N, 3.92. Found: C, 66.95; H, 6.89; N, 3.74. mp 100 °C dec. $\Lambda_{\rm M}=160.6~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. ¹H NMR [(CD₃)₂CO] δ 7.59, 7.33, 6.88 (m, 48 H, Ph), 4.34 (m, 18 H, CH₂), 2.46 (s, 6 H, CH₃), 1.29 (t, 27 H, CH₃ phos).

Calcd for **5b***: C, 65.67; H, 6.82; N, 3.83. Found: C, 65.40; H, 6.79; N, 3.71. mp 73 °C dec. $\Lambda_{\rm M} = 164.0~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. ¹H NMR [(C-D₃)₂CO] δ 7.33, 6.88 (m, 48 H, Ph), 4.22 (m, 18 H, CH₂), 3.84 (s, 6 H, CH₃), 1.41, 1.28 (t, 27 H, CH₃ phos).

[Fe(4-CH₃C₆H₄N $\stackrel{\text{m=15}}{\sim}$ N)₂[P(OEt)₃]₃](BPh₄)₂ (5a₁*). This compound was prepared following the method reported above, using the [4-CH₃-C₆H₄N $\stackrel{\text{m=15}}{\sim}$ N]BF₄ diazonium salt; yield ≥65%.

Anal. Calcd: C, 67.05; H, 6.96; N, 4.05. Found: C, 66.89; H, 7.00; N, 3.92. mp 97 °C dec. $\Lambda_{\rm M}=178.0~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. ¹H NMR [(C-D₃)₂CO] δ 7.52, 7.33, 6.88 (m, 48 H, Ph), 4.27 (m, 18 H, CH₂), 2.41 (s, 6 H, CH₃), 1.25 (t, 27 H, CH₃ phos).

[Fe(4-CH₃C₆H₄N₂)₂[PhP(OEt)₂]₃](BPh₄)₂ (5a). This compound was prepared exactly as for $5a^*$ starting from [FeH(η^2 -H₂){PhP(OEt)₂}₄]-BPh₄; yield \geq 70%.

Anal. Calcd: C, 72.35; H, 6.53; N, 3.67. Found: C, 72.20; H, 6.60; N, 3.58. mp 102 °C dec. $\Lambda_{\rm M}=172~\Omega^{-1}~{\rm M}^{-1}~{\rm cm}^2$. $\nu({\rm NN})~({\rm CH_2Cl_2}), 1798~{\rm sh}, 1774~{\rm s~cm}^{-1}$. It should be noted that the same compound had previously been prepared by us from reaction of the hydride FeH₂[PhP-(OEt)₂]₄ with aryldiazonium cations. ^{11b}

[Fe(4-CH₃C₆H₄N=NH)(4-CH₃C₆H₄CN)P₄](BPh₄)₂ [P = PhP(OEt)₂ (6), P(OEt)₃ (6*)]. An excess of the aryldiazonium salt [4-CH₃C₆H₄-N₂]BF₄ (1.2 mmol, 0.25 g) was added to a solution of [FeH(4-CH₃C₆H₄CN)P₄]BPh₄ (0.4 mmol) in 20 mL of dichloromethane. The reaction mixture was stirred for 3 h and then filtered to remove the unreacted diazonium salt. The resulting solution was evaporated to dryness and the oil obtained was stirred with ethanol (10 mL) containing NaBPh₄ (0.8 mmol, 0.27 g). A yellow solid separated out, which was filtered and crystallized by dissolving the product in CH₂Cl₂ (5 mL) and, after filtration, adding ethanol drop by drop until a solid separated out; yield ≥65%. Anal. Calcd for 6: C, 71.74; H, 6.72; N, 2.44. Found: C, 71.27; H, 6.80; N, 2.32. mp 121 °C. Λ_M = 176.0 Ω⁻¹ M⁻¹ cm². ¹H NMR [(CD₃)₂CO] δ 13.63 (m, 1 H, NH), 7.76, 7.25, 6.85 (m, 68 H, Ph), 4.05 (m, 16 H, CH₂), 2.42, 2.36 (s, 6 H, CH₃ diazene and CH₃ nitrile), 1.39, 0.96 (t, 24 H, CH₃ phos).

Calcd for **6***: C, 65.46; H, 7.26; N, 2.63. Found: C, 65.25; H, 7.08; N, 2.47. mp 124 °C. Λ_{M} = 181.0 Ω^{-1} M⁻¹ cm². ¹H NMR [(CD₃)₂CO] δ 14.18 (m, 1 H, NH), 7.55, 7.33, 6.87 (m, 48 H, Ph), 4.33 (m, 24 H, CH₂), 2.44, 2.42 (s, 6 H, CH₃ diazene and CH₃ nitrile), 1.43, 1.22 (t, 36 H, CH₃ phos).

Results and Discussion

Synthesis and Properties of Dihydrogen Complexes. Hydrides FeH_2P_4 [P = PhP(OEt)₂ and P(OEt)₃] react at low temperature (-80 °C) in ethanol, in both stoichiometric and excess amounts of HBF₄·Et₂O, to give dihydrogen complexes [FeH(η^2 -H₂)P₄]⁺ (1,1*), which were isolated as BPh₄⁻ salts and characterized. The protonation reaction may also be carried out with a different acid such as CF₃COOH, or in diethyl ether or THF as solvent, affording in all cases [FeH(η^2 -H₂)P₄]⁺ compounds but in lower yields.

Complexes 1, 1* are pale-yellow solids and relatively stable under nitrogen or argon, both as solids and in solution of polar organic solvents. Evolution of H_2 does not take place at room temperature, and only by heating of their acetone or 1,2-dichloroethane solution over 70 °C was a slow loss of H_2 detected. Exchange of H_2 ligand with D_2 gas in solution at 20 °C occurs¹⁹ with a half-life $(t_{1/2})$ of about 3.5 h. At the end of the reaction, however, only the $[FeD(\eta^2-D_2)P_4]^+$ complex was isolated.

Selected spectroscopic properties of the hydride-dihydrogen derivatives, which are diamagnetic and 1:1 electrolytes, are reported in Table I. The infrared spectra of complexes 1, 1* reveal only weak modes at 1715-1720 cm⁻¹, which may be attributed to the terminal Fe-H stretches, whereas the modes of most interest, $\nu(HH)$ and $\nu(MH_2)$, were not observed, probably due to overlap in the IR by $\nu(CH)$ and $\nu(CC)$, respectively. 1d

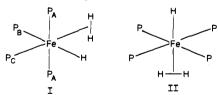
In the high-field region of the ¹H NMR spectra the [FeH- $(\eta^2$ -H₂){PhP(OEt)₂}₄]⁺ complex at -85 °C in CD₂Cl₂ shows a multiplet at δ -10.34 with a T_1 value²⁰ of 54 ms attributed to hydride resonance^{21,22} and a broad singlet at δ -7.2 with a very

⁽¹⁹⁾ The replacement of the metal-bonded hydrogen in the complex by D_2 gas at room temperature (20 °C) was achieved by dissolving the $[FeH(\eta^2-H_2)P_4]BPh_4$ complex in $(CD_3)_2CO$ (20 mg/mL), degassing the solution, and then adding D_2 (1 atm). The progress of the exchange was followed by ¹H NMR on samples of the solution removed by a syringe at different times.

NMR on samples of the solution removed by a syringe at different times. (20) Determined by the inversion-recovery method at 79.542 MHz. Errors are $\pm 20\%$ in T_1 values.

⁽²¹⁾ Because at this temperature (-85 °C) the ^{31}P NMR spectrum of the compound suggests the existence of both cis and trans isomers, the presence of only one multiplet for the hydride resonance is probably due to the quintet of the trans isomer superimposed on the AB₂CX (or ABC₂X) pattern of the cis isomer. Several T_1 measurements on the multiplet gave a mean value of 54 ms for the apparent relaxation time. In order to confirm the existence of the two isomers, we attempted to analyze the ^{1}H resonance by observing the spectra during the T_1 determinations. We hoped that the differences in T_1 between the hydride resonance of the cis and trans isomers would annul the ^{1}H signal for only one isomer, allowing clear observation of the signal of the other. Unfortunately, in repeated T_1 determinations using an inversion–recovery pulse sequence, we observed no variation of the profile of the spectra; furthermore when the resonance was nulled out, it involved the whole pattern, perhaps because the relaxation times of the two isomers are similar. In the absence of further data, the existence of the two isomers must therefore be considered as probable.

Table I. Selected Infrared and NMR Data for Iron Complexes

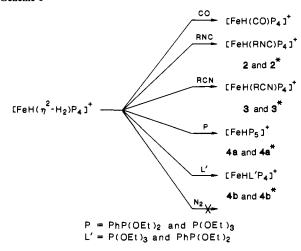

no.	cation ^a	IR ^b		¹ H NMR, d,e	spin	31P{1H} NMR ^{d,g}
		ν, cm ⁻¹	assign	δ H hydride	syst	δ (coupling const, Hz)
	$[FeH(\eta^2-H_2)\{PhP(OEt)_2\}_4]^+$	1715 w ^c	ν(MH)	+34 °C; -8.00 qi		187.0 s
				$J_{\rm PH}({\rm app}) = 22$		_
				-85 °C; -7.2 br (η^2-H_2)		187.8 s, 186.4 m
			() () ()	-10.34 m (H hydr)		1647 -
1*	$[FeH(\eta^2-H_2)\{P(OEt)_3\}_4]^+$	1720 w ^c	$\nu(MH)$			164.7 s
	•			$J_{PH}(app) = 17$ -85 °C; -9.6 br	A_2B_2	$\delta_{A} = 172.2, \delta_{B} = 168.5$
				-85 C, -9.0 bi	$\Lambda_2 \mathbf{D}_2$	$(J_{AB} = 115.0)$
la l	trans-[FeH(4-CH ₃ C ₆ H ₄ NC) $\{PhP(OEt)_2\}_4\}^+$	2075 s	$\nu(NC)$	-9.88 qi		185.8 s
	1, and [1 of 1 () of 13 of 141 (o) (1 m (o 20) 2,41	(2075 s)	. (= : =)	$J_{\rm PH} = 48.3$		
2b	trans-[FeH(4-CH ₃ OC ₆ H ₄ NC){PhP(OEt) ₂ } ₄] ⁺	2079 s, 2045 sh	$\nu(NC)$	−9.87 qi ^ƒ		185.1 s ^f
		(2072 s, 2042 sh)		$J_{\rm PH} = 49.5$		
2c	$trans-[FeH{2,6-(CH_3)_2C_6H_3NC}{PhP(OEt)_2}_4]^+$	2056 s	$\nu(NC)$	−10.45 qi		185.5 s
		(2052 s)		$J_{\rm PH} = 50.5$		
2d	$trans$ -[FeH(4-ClC ₆ H ₄ NC){PhP(OEt) ₂ } ₄]+	2062 s, 2023 sh	$\nu(NC)$	-9.65 qi		185.1 s
_	(T. 11/4 170 O 11 170 (D) D (OT))]+	(2060 s, 2020 sh)	(310)	$J_{\rm PH} = 48.0$		104.0
2e	trans- $[FeH(4-NO_2C_6H_4NC)\{PhP(OEt)_2\}_4]^+$	2048 s, 2013 sh	$\nu(NC)$	-9.01 qi		184.0 s
	the FE-HA CH C H NO(D(OEA)) It	(2042 s, 2010 sh)	ν(NC)	$J_{\rm PH} = 47.8$ -10.49 qi ^f		164.2 s ^f
2a*	trans-[FeH(4-CH ₃ C ₆ H ₄ NC){P(OEt) ₃ } ₄] ⁺	2096 s, 2047 sh (2085 s, 2040 sh)	V(NC)	$J_{\rm PH} = 53.1$		164.2 8
3a	trans-[FeH(4-CH ₃ C ₆ H ₄ CN){PhP(OEt) ₂ } ₄] ⁺	2208 m (2206 m)	u(CN)	-18.24 qi ^f		185.6 s ^f
a	17475-[1 C11(4-C113C6114C14)(1 III (OL1)2)4]	1920 w	$\nu(MH)$			105.0 3
3b	trans-[FeH(n-PrCN){PhP(OEt) ₂ } ₄] ⁺	2232 m (2225 m)		-19.54 qi		186.4 s ^f
-	(0 207 ₂)4 ₁	1930 w	$\nu(MH)$	-		
3a*	cis -[FeH(4-CH ₃ C ₆ H ₄ CN){P(OEt) ₃ } ₄] ⁺	2245 m (2248 m)		-9.6 m	ABC_2	$\delta_{\rm A} = 171.3, \delta_{\rm B} = 166.2,$
		1880 w	$\nu(MH)$		_	$\delta_{\rm C} = 162.1$
						$(J_{AB} = 128.0) (J_{AC} = 95.3)$
			(2.45.5)		($(J_{\rm BC} = 63.0)$
4a	$[FeH{PhP(OEt)_2}_5]^+$	(1940 w)	$\nu(MH)$	-12.2 m ^f	A_4B^f	$\delta_{A} = 186.1, \delta_{B} = 183.4$
	: (E.H(D(OE)) (DED(OE)) 1+	(1010)	(MIII)	11.0 ($(J_{AB} = 58.8)$ 185 m ^f , 160 m ^f
4b 4a*	cis-[FeH{P(OEt) ₃ }{PhP(OEt) ₂ } ₄] ⁺ [FeH{P(OEt) ₃ } ₅] ⁺	(1910 w) (1902 w)		-11.9 m ^f -12.8 m ^f	A_4B^f	$\delta_{A} = 163.6, \delta_{B} = 160.7$
•и.	[ren(r(OE()3)5]	(1902 W)	V(14111)	-12.8 III	Λ4Β.	$(J_{AB} = 84.0)$
4b*	cis-[FeH{PhP(OEt) ₂ }{P(OEt) ₃ } ₄]+	(1910 w)	$\nu(MH)$	-12.5 m ^f		186 m ^f , 162 m ^f
5a*	[Fe(4-CH ₃ C ₆ H ₄ N ₂) ₂ {P(OEt) ₃ } ₃] ²⁺	1780 s	$\nu(NN)$	12.2	AB_2^h	$\delta_{\rm A} = 131.0, \delta_{\rm B} = 122.5$
	[(113-0-14-12/2/-(/3/3)	(1773 s)	. (/		- 2	$(\hat{J}_{AB} = 114.4)$
5a ₁ *	$[Fe(4-CH_3C_6H_4N=15N)_2[P(OEt)_3]_3]^{2+}$	ì753 s	$\nu(NN)$		$AB_2X_2^h$	
	72. (303	(1740 s)	, .			$(J_{AB} = 114.7) (J_{AX} = 7.3)$
						$(J_{\rm BX} = 16.8)$
5b*	$[Fe(4-CH_3OC_6H_4N_2)_2[P(OEt)_3]_3]^{2+}$	1779 s	$\nu(NN)$		AB_2^h	$\delta_{A} = 132.4, \delta_{B} = 123.0$
		(1775 s)	(0)			$(J_{AB} = 115.9)$
6	cis -[Fe(4-CH ₃ C ₆ H ₄ N=NH)(4-CH ₃ C ₆ H ₄ CN){PhP-	2263 w	$\nu(CN)$		ABC_2^f	$\delta_{\rm A} = 182.1, \delta_{\rm B} = 180.1,$
	$(OEt)_{2}_{4}^{2+}$	(2258 w)				$\delta_{\rm C} = 171.5$
						$(J_{AB} = 90.0) (J_{BC} = 99.0)$
6*	ois Fe/A CH C H NI-NH)/A CH C H CN\\D	2261 w	ν(CN)		ABC ₂ ^f	$(J_{AC} = 95.0)$
D	cis-[Fe(4-CH ₃ C ₆ H ₄ N=NH)(4-CH ₃ C ₆ H ₄ CN){P- (OEt) ₃ ₄ ²⁺	2261 w (2250 w)	$\nu(CN)$		ABC ₂	$\delta_{A} = 151.8, \delta_{B} = 146.9, \\ \delta_{C} = 138.2$
	(OL1)3[4]	(2230 W)				$(J_{AB} = 134.7) (J_{BC} = 145.0)$
						$(J_{AC} = 121.0)$

^aAll compounds are BPh₄ salts. ^b In CH₂Cl₂ and (KBr). ^c In Nujol mull. ^dAt room temperature in CD₂Cl₂, unless otherwise noted. ^eCoupling constant (J_{PH}) in Hz. ^f In $(CD_3)_2CO$ at +34 °C. ^ePositive shift downfield from 85% H₃PO₄. ^h In $(CD_3)_2CO$ at -60 °C.

short T_1 value (3 ms), which is characteristic of a η^2 -H₂ ligand.² However, no resolvable coupling to phosphorus atoms was shown by this resonance associated with η^2 -H₂ in the complex. Increasing the sample temperature caused a variation of the spectra until coalescence of the resonances to a broad singlet at δ -8.2 occurred²³ at -30 °C. An intramolecular exchange process of the unique hydride with the two hydrogens may reasonably explain this fluxional process, as previously observed in the [MH(η^2 -H₂)-(depe)₂]BPh₄ (M = Fe, Os) derivatives.³

The ${}^{51}P\{{}^{1}H\}$ NMR spectra of 1 change with temperature and, while at +34 °C only one signal at δ 187.0 is present, at -85 °C a sharp singlet at δ 187.8 and a multiplet at δ 186.4 appear. These data may be interpreted on the basis of the existence in solution of two isomers with geometry of the cis (I) and trans (II) types, respectively, because the multiplet may be attributed to the cis isomer, while the singlet is expected for the trans. It may also

be noted that, for the dihydride precursor FeH₂[PhP(OEt)₂]₄, the presence of both cis and trans isomers has been proposed in solution on the basis of its NMR spectra.²⁴

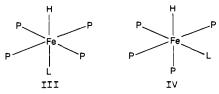

In the high-field region of the ¹H NMR spectra, the [FeH- (η^2-H_2) {P(OEt)₃}₄]BPh₄ (1*) derivative shows a quintet at room temperature that collapses at -10 °C to a broad signal. However, further lowering of the temperature does not change the profile of the spectra and even at -85 °C in CD₂Cl₂ only one broad resonance is present. Measurements of T_1 at this temperature give a mean value of 4 ms, in agreement in this case too with a molecular hydrogen rather than a trihydride complex. Probably further reduction of the temperature below -85 °C should show both the hydride and η^2 -H₂ resonances, in the ¹H NMR spectra,

⁽²²⁾ It must be noted that the T_1 values for both hydride and hydrogen resonances in 1 are lower than those generally found in previously reported hydrides^{22a} and η^2 -H₂ complexes; ¹⁻⁶ however, these figures seem to be characteristic of complexes containing PhP(OEt)₂ or P(OEt)₃ as coligands.^{22b} (a) Crabtree, R. H.; Segmuller, B. E.; Uriarte, R. J. Inorg. Chem. 1985, 24, 1949. (b) Antoniutti, S.; Albertin, G.; Amendola, P.; Bordignon, E. J. Chem. Soc., Chem. Commun., in press.

⁽²³⁾ A sharp quintet results on increasing the sample temperature further.

⁽²⁴⁾ Meakin, P.; Guggenberg, L. J.; Jesson, J. P.; Gerlach, D. H.; Tebbe, F. N.; Peet, W. G.; Muetterties, E. L. J. Am. Chem. Soc. 1970, 92, 3482.

Scheme I



as shown by the related PhP(OEt)₂ derivative. At -85 °C the $^{31}P\{^{1}H\}$ NMR spectra show an $A_{2}B_{2}$ multiplet that may be simulated with the values reported in Table I. This result is unexpected, because an $A_{2}BC$ (or $AB_{2}C$) multiplet is predicted for a cis structure (I). However, the presence of an $A_{2}B_{2}$ spectrum may be tentatively explained by taking into account the fact that the hydride–hydrogen exchange, being still rapid on the NMR time scale at -85 °C, may make the two P_{B} and P_{C} nuclei magnetically equivalent at this temperature.

We attempted to detect the resonances for η^2 -HD in a mixture of $[FeH(\eta^2-HD)P_4]^+$ and $[FeD(\eta^2-HD)P_4]^+$ formed together with other isotopomers from the reaction of D_2 or HD with 1 or by protonation with HBF₄ of FeD_2P_4 species. In every case, a broad resonance^{2b,3a} beside the hydride pattern was always observed in the high-field region of the ¹H NMR spectra between -85 and +34 °C.

Studies on the chemical properties of both dihydrogen complexes 1 and 1* showed that the deprotonation reaction takes place with triethylamine at room temperature to give the FeH_2P_4 dihydride precursor. Furthermore, the H_2 group in 1 and 1* may easily be substituted by several ligands, affording a new series of monohydride complexes, as reported in Scheme I. Exchange of H_2 ligand with N_2 to give $[\text{FeH}(N_2)P_4]^+$ was not detected.

All complexes were isolated as stable white or pale-yellow solids, diamagnetic, and 1:1 electrolytes. A trans geometry of type III may be proposed in solution for carbonyl^{11c} [FeH(CO)P₄]⁺ and isocyanide complexes 2 and 2* on the basis of the sharp singlet that appears in their ³¹P¹H} NMR spectra (between -80 and +34 °C). On the other hand, a geometry depending on the nature of the phosphite ligand was observed in the nitrile [FeH(RCN)P₄]⁺ complexes. While a trans geometry (III) is proposed in solution

for PhP(OEt)₂ derivatives 3 (singlet in the ³¹P spectra), the presence of an AB₂C multiplet in the ³¹P NMR spectra of P(OEt)₃ compound 3* suggests a cis geometry (IV) for this complex. Lastly, compound [FeHL'P₄]⁺ (4b and 4b*), containing two different phosphite ligands, shows a complicated pattern in the ³¹P NMR spectra, i.e. two multiplets at δ 185–186 and 160–162, which may be interpreted on the basis of the existence in solution of a cis geometry (IV) for the compound. A trans structure, in fact, should give a doublet and a quintet in the ³¹P spectra.

The ¹H NMR spectra of all these complexes show the hydride resonance as a quintet or multiplet between $\delta - 12.8$ and -9.01, except for trans nitrile derivatives **3a** and **3b**, whose resonances occur at $\delta - 18.24$ and -19.54. These different chemical shifts may be explained on the basis of the different trans influence of the

Scheme II

$$[FeH(\eta^{2}-H_{2})P_{4}]^{+} \xrightarrow{ArN_{2}^{+}} [Fe(\eta^{2}-H_{2})(ArN = NH)P_{4}]^{2+} \xrightarrow{-H^{+}}$$

$$1 \qquad \qquad "A"$$

$$[Fe(ArN_{2})P_{4}]^{+} \xrightarrow{+ArN_{2}^{+}} [Fe(ArN_{2})_{2}P_{3}]^{2+}$$

$$"B" \qquad \qquad 5$$

Scheme III

$$[FeH(\eta^{2}-H_{2})P_{4}]^{+} \xrightarrow{ArN_{2}^{+}} [Fe(\eta^{2}-H_{2})(A_{1}N=NH)P_{4}]^{2+} \xrightarrow{ArN_{2}^{+}} \frac{ArN_{2}^{+}}{-H_{2}^{-}}$$

$$1 \qquad "A"$$

$$[Fe(ArN=NH)(ArN_{2})P_{4}]^{3+} \xrightarrow{-H^{+}} [Fe(ArN_{2})_{2}P_{3}]^{2+}$$

$$"C" \qquad 5$$

nitrile ligand which, being a better σ -donor but a poorer π -acceptor than both isocyanide and phosphite, probably caused the shift of the hydride resonance.

The isocyanide complexes show the $\nu(CN)$ band in the infrared spectra at 2048–2096 cm⁻¹ (CH₂Cl₂ solution), while the $\nu(CN)$ peak appears at 2208–2245 cm⁻¹ in the nitrile derivative. This frequency is lowered by about 20 cm⁻¹ as compared to the free ligand value and suggests some back-donation of electrons from iron into the nitrile ligands. Monohydrides of iron(II) with phosphite are rare^{11c} and no such compounds containing nitrile or isocyanide ligands have been described. The use of dihydrogen complexes as precursors represents a convenient method of synthesis of a new series of RCN and RNC monohydride Fe(II) phosphite derivatives.

Reactivity with Aryldiazonium Cation. The $[FeH(\eta^2-H_2)P_4]^+$ complexes react with an excess of aryldiazonium cations to yield the bis(aryldiazenido) $[Fe(ArN_2)_2P_3]^{2+}$ (5 and 5*) derivatives, which were isolated and characterized. Studies on the progress of the reaction by infrared and ¹H NMR spectra, changing the $[FeH(\eta^2-H_2)P_4]^+:ArN_2^+$ ratio in the range 1:0.5 to 1:4, did not allow a reaction path to be defined unambiguously. In every case the IR spectra showed two $\nu(NN)$ bands at 1780-1774 and 1668-1660 cm⁻¹, attributed to the [Fe(ArN₂)₂P₃]²⁺ and [Fe- $(ArN_2)P_4$] + $(Ar = 4-CH_3C_6H_4)$ derivatives, respectively. As the reaction proceeded, the 1780-1774-cm⁻¹ band increased, and the 1668-1660-cm⁻¹ absorption remained almost unchanged in the case of the P(OEt)₃ derivatives, while it decreased in the PhP-(OEt)₂ compound and disappeared after 1 h. At the end of the reaction, therefore, compound 5 was observed in the case of P = PhP(OEt)₂, while both complexes 5* and [Fe(ArN₂)P₄]+ were present with P(OEt)₃ as ligand and both were contained in the raw final product. However, no other aryldiazenido compounds were detected.

Besides the ArN_2 compounds, the ¹H NMR spectra of the reaction mixture showed a diazene intermediate on the basis of the appearance of a broad singlet near δ 14.2. Since such a diazene does not seem to be either the $[FeH(ArN=NH)P_4]^+$ or the $[Fe(ArN=NH)_2P_4]^{2+}$ derivatives, which are known to be formed by reaction of the hydride FeH_2P_4 with aryldiazonium cations, ^{11a,b} the existence in solution of the equilibrium

$$[\text{FeH}(\eta^2\text{-H}_2)P_4]^+ \xrightarrow[+\text{H}^+]{-\text{H}^+} \text{FeH}_2P_4$$

may reasonably be excluded. Taking into account the lability of the H_2 ligand in 1 and 1* and the presence of a diazene as intermediate, a reaction path of the type reported in Scheme II may be proposed.

However, in the case of the $P(OEt)_3$ derivative at least, our previous results^{11b} seem to exclude the possibility of such a mechanism giving the bis(aryldiazenido) derivative, because the substitution of a $P(OEt)_3$ ligand by ArN_2^+ in the $[Fe(ArN_2)P_4]^+$ ("B" compound) does not take place. The presence of a small amount of monoaryldiazenido "B" in the reaction mixture and in the final product may, however, indicate that the reaction path $1 \rightarrow "A" \rightarrow "B"$ is also partly operating. An alternative mech-

anism of the type shown in Scheme III, involving an intermediate diazene-diazenido iron(II) complex, would be stimulating, but the absence of further data makes any discussion purely speculative.

We hoped that the presence of a H_2 molecule bonded to the iron atom would allow reduction of the N=N function, i.e. formation of arylhydrazine or arylhydrazido(-1) complexes. We therefore studied the reaction of 1 with aryldiazonium cation under H_2 too, but in no case was evidence of the formation of such a derivative observed, nor did we find free arylhydrazine in the reaction mixture.

Table I reports selected properties of the bis(aryldiazenido) complexes. It may be noted that only the PhP(OEt)₂ derivatives had been previously prepared, ^{11b} whereas now, using 1* as precursor, the P(OEt)₃ compounds can also be prepared with ease. The chemical and spectroscopic properties of these new [Fe-(ArN₂)₂{P(OEt)₃|₃]²⁺ derivatives are very similar to those of the related PhP(OEt)₂ complexes. The IR spectra show only one ν (NN) band at 1779–1780 cm⁻¹ (CH₂Cl₂), which is shifted by 27 cm⁻¹ at lower frequencies on labeling with ¹⁵N. The ³¹P{¹H} NMR spectra show a broad signal at room temperature, but an AB₂ multiplet appears at -60 °C, and this was simulated with the parameters reported in Table I. As for the related PhP(OEt)₂ derivatives, ^{11b} these data still seem to suggest a slightly distorted TBP geometry, with singly bent aryldiazenido ligands in the mutually trans position for [Fe(ArN₂)₂{P(OEt)₃}₃]²⁺ too.

We also studied the reactivity of the new monohydrides $[FeHLP_4]^+$ with aryldiazonium cations. The results obtained show that, apart from the monocarbonyl^{11c} $[FeH(CO)P_4]^+$, only the nitrile $[FeH(RCN)P_4]^+$ complexes quickly react with ArN_2^+ in CH_2Cl_2 to give the new diazene $[Fe(ArN=NH)(RCN)P_4]^{2+}$ (6 and 6*) derivatives, which can be isolated and characterized. Instead, both isocyanide 2, 2* and pentakis phosphite 4, 4* are unreactive toward ArN_2^+ cation and can be recovered unaltered after a 24 h period of reaction.

The new diazene compounds $6, 6^*$ are orange-yellow solids, diamagnetic, and 2:1 electrolytes. Their ¹H NMR spectra confirm the presence of the ArN=NH ligand, showing a broad singlet at δ 14.18-13.63 attributed to diazene hydrogen atoms split into a sharp doublet $(J_{15NH} = 65 \text{ Hz})$ in the labeled [Fe(ArN= 15 NH)(RCN)P₄]²⁺ compound. On the basis of the ABC₂ multiplets which appear in the 31 P{¹H} NMR spectra, a geometry of type V with the nitrile and diazene ligands in a mutually cis position may be proposed for these derivatives in solution.

Mono diazene complexes 6,6* react in dichloromethane solution with triethylamine (ratio 1:1) to give the monoaryldiazenido

[Fe(ArN₂)P₄]⁺ complexes, as shown in eq 1. Studies on the [Fe(ArN=NH)(RCN)P₄]²⁺ + NEt₃ \rightarrow

$$[Fe(ArN_2)P_4]^+ + RCN + Et_3NH^+$$
 (1)

progress of the reaction by infrared spectra showed the appearance of a band at $1668-1660~{\rm cm^{-1}}$, due to the $[{\rm Fe}({\rm ArN_2}){\rm P_4}]^+$ complexes and the band of the free nitrile at $2230~{\rm cm^{-1}}$. Furthermore, the IR spectrum of the final reaction mixture in the $2300-1600-{\rm cm^{-1}}$ region is identical with that of a 1:1 solution of $[{\rm Fe}({\rm ArN_2}){\rm P_4}]^+$ and $4-{\rm CH_3C_6H_4CN}$. Lastly, the ammonium salt ${\rm Et_3NH^+BPh_4^-}$ can be recovered in quantitative yield and the stoichiometry of reaction 1 therefore seems to be confirmed.

The deprotonation of a monodiazene complex is somewhat surprising, because such complexes of Fe(II)¹¹ or of Ru(II)²⁵ do not react with base to give aryldiazenido derivatives. This unreactivity has been explained on the basis of the nature of the coligands in the complexes, whose probably difficult dissociation prevents the formation of the pentacoordinate aryldiazenido derivatives. The reactivity of our new monodiazene complexes may therefore be attributed to the presence of the nitrile ligand, whose facile dissociation allows reaction 1 to proceed. This confirms the hypothesis^{11a} that, in octahedral diazene complexes, deprotonation is related to the possible dissociation of one of the ligands in the starting complexes.

Acknowledgment. The financial support of the MPI and the CNR, Rome, is gratefully acknowledged. We thank Daniela Baldan for technical assistance.

Registry No. 1, 118460-63-2; 1*, 118460-65-4; 1a, 118460-66-5; 2a, 118460-68-7; 2a*, 118460-78-9; 2b, 118460-70-1; 2c, 118460-72-3; 2d, 118460-74-5; 2e, 118460-76-7; 3a, 118460-80-3; 3a*, 118460-84-7; 3b, 118460-82-5; 4a, 118460-86-9; 4a*, 118474-30-9; 4b, 118460-88-1; 4b*, 118460-90-5; 5a, 109365-33-5; 5a*, 118474-32-1; $5a_1$ *, 118460-94-9; 5b*, 118460-92-7; 6, 118474-34-3; 6*, 118474-36-5; $FeH_2(PhP(OEt)_2)_4$, 28755-83-1; $FeH_2(P(OEt)_3)_4$, 34503-40-7; $[4-CH_3C_6H_4N \equiv ^{15}N]BF_4$, 118460-61-0

⁽²⁵⁾ Albertin, G.; Antoniutti, S.; Pelizzi, G.; Vitali, F.; Bordignon, E. Inorg. Chem. 1988, 27, 829.